
Competitive clustering in a bidisperse granular gas:
Experiment, molecular dynamics, and flux model

René Mikkelsen, Devaraj van der Meer, Ko van der Weele, and Detlef Lohse
Department of Applied Physics and J. M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217,

7500 AE Enschede, The Netherlands
(Received 11 July 2003; revised manuscript received 26 February 2004; published 20 December 2004)

A compartmentalized bidisperse granular gas clusters competitively[R. Mikkelsen, D. van der Meer, K. van
der Weele, and D. Lohse, Phys. Rev. Lett.89, 214301(2002)]: By tuning the shaking strength, the clustering
can be directed either towards the compartment initially containing mainly small particles or to the compart-
ment containing mainly large particles. Here, the conditions under which this competitive clustering occurs are
studied experimentally, numerically(by means of molecular dynamics simulations), and analytically. A mini-
mal model is derived that quantitatively accounts for the observed phenomena.
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I. INTRODUCTION: EXPERIMENTAL OBSERVATIONS

Clustering is one of the most characteristic features of
granular gases. It not only makes them fundamentally differ-
ent from ordinary molecular gases, but also plays a major
role in many industrial applications where granular matter is
sorted or transported[1–5]. The clustering arises from the
inelastic collisions between the particles: If a region is
slightly denser than the others, the particles collide more
frequently and hence more energy is dissipated. This results
in the formation of a cluster of slow moving particles. Vice
versa, relatively dilute regions are depleted, with only a few
rapid particles remaining. A particularly clear-cut view of the
clustering process is obtained in a setup with two compart-
ments, where vertical(not too strong) shaking spontaneously
leads to one well-filled and one nearly empty compartment
[6–8]. Similar clustering has also been found in a horizon-
tally shaken system[9].

Until now, most attention has been given to clustering in
monodispersesystems. In this paper we will focus on the
clustering behavior of abidispersemixture of large and
small particles. Recently, we have found that such a mixture
clusters competitively[10]: By tuning the shaking strength,
the clustering can be directed either towards the compart-
ment initially containing mainly small particles, or to the one
containing mainly large particles; see Fig. 1.

Our experimental setup consists of a cylindrical glass tube
with inner diameter 11.2 cm and height 42.2 cm, divided into
two equal compartments by a wall of height 6 cm. The tube
is mounted on a shaker, which brings the system into a gas-
eous state through vertical, sinusoidal vibrations with adjust-
able frequencyf and amplitudea. In Fig. 1 we show two
experimental runs, at different shaking strength, with a mix-
ture of P1=300 stainless steel beads of radiusr1=2.50 mm
andP2=600 smaller ones ofr2=1.25 mm. The initial condi-
tion in both experiments is the same:{180 large, 200 small}
in the left compartment(A), and{120 large, 400 small} in
the right compartment(B). This means that in the initial
situation 55% of the total particle mass is in compartment A.
Only the lower third part of the tube is shown in Fig. 1, since
particles rarely go up all the way to the top lid.

For very strong shaking(not shown) the large and small
particles distribute themselves uniformly over the two com-
partments. This will be denoted as regime 0. In this case, the
dissipation from the particle collisions is overwhelmed by
the energy input into the system.

When we reduce the shaking strength below a certain
threshold(see Sec. III for details), starting out from the same
initial state, the particles form a cluster in compartment A;
see Fig. 1, left column. This is regime I. The direction of the
clustering is towards the larger total particle mass. It takes
about half a minute for the cluster to develop.

For very mild shaking, however, the same initial condition
surprisingly leads to a cluster in theother compartment: see
Fig. 1, right column. We will call this regime II. The series of
events is as follows: At first the large particles stay close to
the floor, transferring energy from the vibrating bottom to the
smaller ones above them, which thereby gain relatively high
velocities. This is reminiscent of the demonstration experi-
ment in which one puts a tennis ball on top of a basketball
and lets them drop together: when they hit the ground, the
tennis ball is “launched” and jumps much higher than its
release height[11]. The effect is stronger in the left box
(which has more large particles) than in the right box, and
thus the small beads go preferentially into the latter(B). As a
consequence, the remaining particles in compartment A be-
come more mobile, and after a couple of minutes the first
large beads also begin to make it over the wall into compart-
ment B, where they are immediately swallowed by the de-
veloping cluster. With every particle that leaves compartment
A, the process progressively speeds up. In the experiment of
Fig. 1, right column, the clustering is complete after 15 min-
utes.

In the remainder of this paper we will give a quantitative
description of this competitive clustering phenomenon in
terms of a flux model and also through molecular dynamics
(MD) simulations. Our goal is the construction of a minimal
model that describes the clustering phenomena, rather than a
general kinetic theory of the bidisperse gas. Specifically, we
make three important simplifying assumptions regarding the
energy equipartition in mixtures, the barometric height dis-
tribution, and the Maxwellian velocity distribution. Though
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it may appear that our minimal model bypasses the state of
the art in granular matter, it is definitely sufficient to account
for the experimental and numerical results on competitive
clustering.

Throughout the paper we will work with particles of the
same material, which thus have the same material densityr
and will be taken to have one constant coefficient of restitu-
tion e; that is, we neglect the dependence ofe on the velocity
and size of the particles[12,13]. The number of particles is
taken such that at rest they form one to two layers on the
bottom of the container. This number is sufficiently large to
keep the relative effect of statistical fluctuations limited, and
thus to allow for a mean field description. On the other hand,
it is small enough to keep the gas reasonably dilute even in
the clustered situation. The clusters in Fig. 1 look very dense,
but this is an optical illusion due to the fact that the particles
are projected onto a plane; in reality they are scattered

throughout the three-dimensional compartment.
In Sec. II, MD simulations are employed to check two of

the main approximations used in the flux model, namely, that
the particles in each compartment obey a barometric height
distribution, and that the small and large particles have
roughly the same granular temperature. In Sec. III the flux
model is worked out. In the main text we emphasize the
physical ideas, while the mathematical derivation is given in
an Appendix.

In Sec. IV we show, on the basis of the flux model, that
the transition from regime I to II is directly related to a shift
of the boundary between the basins of attraction associated
with the two different clustered situations. We also study the
dependence of the clustering behavior on the size ratioc
=r1/ r2 and the total particle numbersP1 andP2. Predictions
from the flux model are put side-by-side with measurements
obtained from MD simulations and laboratory experiments,
and fair agreement is found. Finally, Sec. V contains con-
cluding remarks.

II. MD SIMULATIONS FOR ONE COMPARTMENT

A. Numerical scheme

For the simulations we use a three-dimensional event
driven code: Between two events(collisions) the particles
move freely, describing parabolic paths under the influence
of gravity, until the next collision occurs. A collision can be
either between particles or between a particle and a wall, and
is signaled by a spatial overlap of the two. At such an event,
the velocities of the particles after contact are computed from
the velocities just before contact using Newton’s laws.

The particles are taken to be hard spheres. This means that
we ignore any deformations, which for the steel particles
used in our experiments is a reasonable approximation. The
coefficient of normal restitutione for particle-particle colli-
sions is taken to be constant,e=0.85, and the same for the
large and small beads. The coefficients of tangential restitu-
tion and dynamical friction are adjustable in the code, but for
the simulations presented here they are set equal to their
ideal (dissipationless) values.

The coefficients of restitution between the particles and
the walls and bottom can be adjusted independently. For the
coefficient of normal restitution we use 0.95, obtained from
test experiments in which we let the beads bounce on solid
plates of glass(representing the walls) and aluminum(for the
bottom).

For simplicity, the experimental setup is simulated as a
rectangular box with infinitely high side walls. The ground
area of each compartment, and also the height of the wall
between them is the same as in the actual experiment. The
bottom is vibrated vertically with adjustable frequencyf and
amplitudea following a sinusoidal wave form.

B. Height distribution and granular temperature

One of the main assumptions in the bidisperse flux model
(see Sec. III) is that the granulartemperatures T1 andT2 of
the large and small particles are independent of the heightz.
This assumption leads to the barometric height distribution,

FIG. 1. Images from two experiments with a bidisperse mixture
of steel beads, starting from the same initial condition. For rela-
tively strong shaking(left column) the clustering is directed to-
wards theleft compartment, whereas for mild shaking(right col-
umn) it goes into theright compartment. The shaking frequency in
the left column isf =60.0 Hz, and in the right column 37.5 Hz,
while the peak-to-peak amplitude in both cases is 2a=2 mm. The
initial condition (topmost picture) is {180 large, 200 small} in the
left compartment, and{120 large, 400 small} in the right one. With
the radius of the large beadssr1=2.50 mmd being twice that of the
small onessr2=1.25 mmd, this means that initially 55% of the total
particle mass is in the left compartment.

MIKKELSEN et al. PHYSICAL REVIEW E 70, 061307(2004)

061307-2



just as in an ordinary gas. That is, the number densities of
both species(i =1,2) are taken to decay exponentially withz:

niszd = nis0de−migz/Ti . s1d

The temperatureTi is defined in analogy with the standard
relation from statistical physics12mikvi

2l= 3
2kBTi, where the

Boltzmann constantkB is to be replaced by a mere number.
Here we will choosekB=1. SoTi ;

1
3mikvi

2l, directly propor-
tional to the mean kinetic energy of the particles of speciesi.
Its value is determined by a balance between the input of
energy due to the vibrating bottom and the dissipation of
energy via the collisions[14].

The second, bolder assumption in the model is thatT1
=T2s=Td. The large and small particles are(per compart-
ment) taken to be in thermal equilibrium with each other at
thesamegranular temperature, and Eq.(1) then simplifies to
niszd=nis0dexph−migz/Tj. For size ratiosc close to unity
(the monodisperse limit) this is expected to hold well, but for
large values ofc the correspondence will deteriorate. Several
recent studies[15–20] have shown that energy equipartition
generally breaks down in bidisperse granular gases, with the
heavier particles having a higher temperature.

In particular, Wildman and Parker[15] used positron
emission particle tracking to experimentally determine the
granular temperature in a vibrofluidized mixture of glass
beads with radiir1=2.5 mm andr2=2.0 mmsc=1.25d. They
found that the temperature of the larger particles was always
higher than that of the smaller ones. Keeping the total par-
ticle mass in the system the same, the temperature ratio
T1/T2 could be raised by increasing the ratiosP1/P2d be-
tween the numbers of large and small beads.

To check the temperature ratio and the density profiles in
our own system, we performed MD simulations. In Figs. 2–4
the results are shown forc=1, 2, and 3, respectively.

In all three cases logfniszdg (for i =1 and 2) follows an
approximately straight line, indicating that the density pro-
files of both large and small beads indeed decay exponen-
tially, with the large-particle profile decaying faster, in agree-
ment with Eq. (1). Only at small z the profiles deviate
significantly from the straight line. This is caused by the
vibrating floor: Many of the particles here have a relatively
high energy, since they have just been kicked by the floor but
have had no chance yet to pass on their energy to the other
particles. So the temperature close to the bottom is high and
this means that the curve of log(niszd) flattens. Moreover, a
very narrow region immediately above the floor is swept
clean by the vibrating bottom itself.

FIG. 2. Molecular dynamics(MD) simulation results for a
monodisperse granular gas(size ratioc=1) shaken at frequencyf
=70 Hz and amplitudea=1 mm. Shown are the particle number
density(left) and the granular temperature(right) as function of the
heightz. The ground area of the container isV=100 cm2 (equiva-
lent to the experimental setup of Fig. 1 without the central wall), the
number of particles isP=900, their radius is 1.25 mm, and the plots
are based on 106 numerical snapshots of the gas in its steady state,
sampled at a rate of 1000 per second. The scale used in these plots
is the same as in Figs. 3 and 4, to allow for a comparison with the
bidisperse case.

FIG. 3. Same as Fig. 2, but now for a bidisperse granular gas
consisting of 300 large and 600 small particles with size ratioc
=2. The small particles have the same size as those in Fig. 2, i.e.,
r2=1.25 mm. The density profiles of both the large and the small
particles follow straight lines, indicating an exponential decay with
z (barometric height distribution). The right plot shows that the
granular temperature of the large beads is larger than that of the
small beads. The slanting lines at the top of the temperature profiles
correspond to free parabolic flights of single particles; see also
Fig. 5.

FIG. 4. Same as Fig. 3, but now for size ratioc=3. The densi-
ties of the large and small particles still follow an approximately
exponential decay. The temperature shows considerable deviations
from a constant value, especially for the large particles(see also the
inset, in which the same profiles are shown on a different scale);
however, the upper region of the temperature profile is made up by
only a few particles and has hardly any statistical weight. It is
apparent that the temperature difference between the large and
small particles has increased withc; cf. Fig. 6.
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An interesting observation is that the small particles in the
bidisperse situations(Figs. 3 and 4) reach considerably larger
heights, and have a higher temperature, than the same par-
ticles in the monodisperse situation of Fig. 2. This is the
“tennis ball on basketball” effect mentioned in the Introduc-
tion. The maximum height reached by the small particles
increases withc, i.e., with the growing size of the larger
particles.

The above characteristics are also reflected in the tem-
perature profiles. The temperature is found to be roughly
constant except at the bottom and top. Close to the bottom
the temperature is significantly higher, especially for the
large particles. That this is indeed caused by the vertical
kicks from the vibrating floor is shown in Fig. 5, where the
individual x, y, and z components of the temperature are
given (for c=2): For the large particles, thez component
close to the bottom is seen to be almostthreetimes as high as
the other two components.

In the bulk of the profile(the long central part) the tem-
perature components are roughly equal, which means that the
velocity distribution is approximately constant and isotropic
here.

The upper part of the temperature profile shows consider-
able fluctuations. The reason for this is that the particle den-
sity is rather low here, so(a) the statistics is relatively poor
and (b) the collisions between particles are rare, which
makes the equipartition of energy via collisions less effec-
tive. In this region the mean free path of the particles in-
creases rapidly with height and their kinetic energy is prima-
rily converted into potential energy due to gravity and not
lost in collisions.

In the uppermost region(abovez=0.9 m in Fig. 5) we see
the ballistic behavior of an individual small particle that
freely travels upward, reaches the top(velocity in thez di-
rection becomes zero atz=1.10 m, outside the plot), and
goes down again. The velocity components in thex and y
direction remain practically constant during this parabolic
flight [21]. A ballistic regime is also apparent in the tempera-
ture profiles of the larger particles: two parabolic flights that
go considerably higher than the rest of the large particles,

and are not thwarted by the surrounding small ones, are
clearly visible in Fig. 3(and Fig. 5) aroundz=0.22–0.35 m.
Indeed, the pronounced increase of the large-particle tem-
perature toward the top of their range is due to the fact that
the large particles observed at these heights are the ones that
have chanced to fly up straight from the bottom, with no(or
very few) collisions on the way up. The increase of the tem-
perature profile here thus roughly reflects the temperature
peak at the bottom.

The simulations show that the large particles have a
higher temperature than the small ones, in agreement with
the results found in the recent literature on this subject
[15–20]. In Fig. 6 the temperature ratioT1/T2 as estimated
from our MD simulations, is given as a function of the size
ratio c=r1/ r2. The values in this plot hold at a height where
the temperature profiles of both species are approximately
constant; in the present case we have chosenz=0.075 m for
each value ofc. They can be read off directly from the
temperature profiles(see Figs. 2–4), or indirectly from the
density profiles, by using the following relation between the
slopes[from the barometric height equation(1)] :

slope large-particle profile

slope small-particle profile
=

m1T2

m2T1
= c3T2

T1
. s2d

Both methods yield the same value for the temperature ratio.
In summary, we find that both species are not in equilib-

rium with the same granular temperature unless their mass
ratio is one. On the other hand, even forc=2, where the
corresponding mass ratiom1/m2 is 8, the temperature ratio is
still less than 1.7. Here the assumption of energy equiparti-
tion (with T1/T2=1) is still a meaningful first approximation.

III. FLUX MODEL

A. Basic equations and approximations

The flux model describes the flow of large and small par-
ticles between the compartments, as a function of the particle
numbers in each compartment and of the shaking strength. It
is a bidisperse generalization of Eggers’ model for a mono-
disperse granular gas[7]. For its derivation we first consider
the gas in a single compartment, and from its steady state

FIG. 5. Thex, y andz components of the granular temperature
for the bidisperse mixture of Fig. 3,c=2. These temperature com-
ponents are directly proportional to the kinetic energies of the par-
ticles: Ti,x= 1

3mivi,x
2 , etc. (i =1, 2 denoting the large and small par-

ticles, respectively).

FIG. 6. Temperature ratioT1/T2, determined from MD simula-
tions, as function of the size ratioc=r1/ r2. The values are taken at
z=0.075 m, which lies in the “constant” part of the large-particle
temperature profile for eachc.
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behavior determine the so-calledflux function,i.e., the num-
ber of particles of each species that leaves the compartment
per unit time[22]. In order to keep the model transparent, we
make three main approximative assumptions that are high-
lighted below.

Barometric height distribution. The particles in each com-
partment are taken to obey the following equation of state
[23]:

pi = nikBTi s3d

(the ideal gas law, withkB=1 in the present context) and the
momentum balance

dpi

dz
= − migni , s4d

for both speciesi =1, 2 separately. Combining these two
equations under the assumption that the granular temperature
Ti =smi /3kBdkvil2 is independent ofz gives kBTidni /dz
=−migni. Integration gives the barometric height formula:

niszd = nis0de−migz/kBTi . s5d

In the previous section we saw that this exponential distribu-
tion describes the real situation remarkably well, given the
fact that both the ideal gas law(3) and the assumption thatTi
is independent ofz only hold in an approximate sense. One
might make the agreement even better by using a more re-
fined equation of state[24–26] and by lettingT vary with z
[27], but this would make an analytical expression for the
flux function very difficult (if not impossible) while not af-
fecting the resulting height distribution too much.

Energy equipartition. The assumption that both species
have the same granular temperature(Ti =T for i =1, 2) strictly
speaking means that we confine ourselves to size ratiosc
close to 1; see Fig. 6. Nevertheless, also forc=2 and even
for c=3 the model turns out to give results that closely agree
with our experiments and MD simulations. This implies that
the inequality ofT1 andT2 does not play an essential role in
the competitive clustering effect, and the assumptionT1/T2
=1 may thus be viewed as an application of Occam’s razor in
order to keep the theory as simple as possible. In the Appen-
dix we will indicate how the model can be extended to a
temperature ratioT1/T2 different from 1.

The density at ground level in Eq.(5) follows from the
conditionVe0

`niszddz=Ni:

nis0d =
migNi

VkBT
, s6d

where Ni is the number of particles(of speciesi) in the
compartment under consideration andV is its ground area.

The temperatureT should be interpreted as an average
value for the whole compartment. Its value is determined by
balancing the energy input via the vibrating bottom and the
energy loss through the interparticle collisions(both per unit
of time):

J0 = VE
0

`

qszddz. s7d

Here J0 is the energy input rate, andqszd is the dissipation
rate per volume. For the sake of simplicity we neglect the
energy loss resulting from collisions with the wall, i.e., we
treat those collisions as being completely elastic.

Maxwellian velocity distribution. The third important sim-
plification is that we assume the velocity distribution of the
particles to be Maxwellian and isotropic. This is an approxi-
mation, both with respect to the Maxwellian nature[28,29]
as to the isotropy(see Fig. 5), allowing us to calculate both
sides of Eq.(7) in closed form. This is done in the Appendix
and we arrive at the following expression for the granular
temperatureT of the compartment:

kBT =
s2afd2m

16ps1 − e2d2 , s8d

where the effective massm is given by

msN1,N2d = S Vsm1N1 + m2N2d

r1
2Îm1N1

2 + r2
2Îm2N2

2 + sr1 + r2d2Î1
2m12N1N2

D2

,

s9d

with m12=m1m2/ sm1+m2d. It is through this quantitym that
the particle numbers of the two species enter the temperature.
One may check that in the monodisperse limitsr1=r2

=r ,m1=m2=md it reduces to mc=1=V2m/ fr2sN1+N2dg2

=mhpV / total projected area of the particlesj2, i.e., the par-
ticle mass divided by the square of a dimensionless filling
factor.

The temperature from Eq.(8) compares well with the
temperaturesT1 andT2 of the large and small particles in the
MD simulations of Figs. 2–4. Indeed, forc=2, 3 one finds
the temperature from Eq.(8) to be in betweenT1 andT2. It is
slightly larger (about 10%) than the weighted average ofT1
and T2, as can be understood from the idealizations in the
model. For example, the model does not take into account
the dissipation from the particle-wall collisions, and assumes
a sawtooth driving instead of the sinusoidal driving used in
the simulations.

B. Flux function

The central quantity of the model is the flux functionFi,
defined as the number of particles(of speciesi) that leaves
the compartment per unit time. It is the product of half the
density 1

2niszd (so that we count particles moving in one di-
rection only) and the average horizontal velocity(which is
equal toÎ2kBT/pmi) integrated over the space above the
wall (width b) from z=h to some cutoff heighth+H. Above
the cutoff height, the state variables of the two compartments
are in equilibrium and hence no net flux occurs. In principle,
H will depend on the mean free path of the particles, but here
we take it to be constant. The integration is then straightfor-
ward [30]:
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FisN1,N2d =
1

2
Î2kBT

pmi
bE

h

h+H

niszddz

=Î kBT

2pmi

bNi

V
e−migh/kBTs1 − e−migH/kBTd

< KNiÎmi

m
e−Dmi/m, i = 1,2. s10d

In the last step we have linearized exps−migH/kBTd, imply-
ing that H! kvi

2l /g, and expressedkBT in terms of the par-
ticle numbersNi by means of Eqs.(8) and(9). The prefactor
K determining the absolute rate of the flux is given by[31]

K = 2Î2s1 − e2d
gbH

Vs2afd
, s11d

and the dimensionless parameterD, which governs the clus-
tering behavior, has the form

D = 16p
gh

s2afd2s1 − e2d2. s12d

The influence of the large particles on the small-particle
flux (and vice versa) is contained in the parameterm, given
by Eq. (9).

In Fig. 7 we show the small-particle fluxF2sN1,N2d as a
function of N2, at D=60 (relatively strong shaking) and D
=200 (weak shaking) respectively, for three different values
of the number of large particlesN1.

For N1=0 (no large particles in the compartment, dashed
curve) the flux function has the well-known monodisperse
form studied in Refs.[7,8,32,33]. It starts out from zero at
N2=0 (expressing the fact that there is no particle flux from
an empty compartment) and initially increases with growing
N2. For any ordinary molecular gas it would always keep
increasing, but for a granular gas it is seen to reach a maxi-
mum and goes down again: The inelastic collisions(which
become more and more frequent asN2 grows) make the par-
ticles slow, until they are hardly able to jump over the wall
anymore and the fluxF2s0,N2d approaches zero in the limit
for N2→`.

For N1=120 (thin curve) and N1=180 (thick curve) the
maximum of the flux function decreases as compared to the
situation without large particles(dashed curve), due to the
much larger total mass in the compartment. However, on the
left flank there is a region where the drawn curves are actu-
ally higher than the dashed one. This is an illustration of the
“tennis ball on basketball effect” mentioned in the Introduc-
tion, with the small particles becoming more mobile thanks
to the presence of the larger ones.

One can deduce the type of clustering that results from the
plots in Fig. 7. Let us start, just as in the experiments of Fig.
1, with {180 large, 200 small} particles in one compartment
(A) and{120 large, 400 small} particles in the other(B). In
the left plot, forD=60, we see that the flux from compart-
ment A(indicated by the left dot) is smaller than from com-
partment B(right dot). Hence the direction of clustering is
towards A, i.e., type I clustering, in agreement with the ex-
perimental observation of Fig. 1(see also Fig. 8). In the plot
for D=200 it is precisely the other way around, resulting in
type II clustering, again in agreement with experiment. Note
also the different scales along the vertical axis in the two

FIG. 7. The small-particle fluxF2sN1,N2d as a function ofN2,
for various numbers of large particles in the compartment:N1=0
(dashed), N1=120(thin), andN1=180(thick). ForD=60 (relatively
strong shaking; left plot) the flux from a compartment with{180
large, 200 small} particles(indicated by the left dot) is smaller than
from a compartment with{120 large, 400 small} particles (right
dot). Hence the clustering is towards the former compartment, i.e.,
type I clustering, in agreement with the experimental observation of
Fig. 1. ForD=200 (weak shaking; right plot) it is the other way
around, leading to type II clustering, again in agreement with ex-
periment. The “tennis ball on basketball effect” is most pronounced
on the left flank of the flux function, where the small-particle flux
from the compartment actuallyrises (with respect to the dashed
curve) upon adding large particles. Note the different scales of the
vertical axis in the two plots: the stronger the shaking, the higher
the particle flux.

FIG. 8. Bifurcation diagram showing the three different cluster-
ing regimes O, I, and II. The particle numbersNi si =1,2d are given
relative to the symmetric solution:Ni −

1
2Pi. The curves represent

the steady state according to the theoretical flux model and the
squares and diamonds are experimental data. For the experiments
we used the setup shown in Fig. 1, filled with a mixture of stainless
steel beads:P1=300 large ones with radiusr1=2.5 mm, andP2

=600 small ones with radiusr2=1.25 mm. Every new run was
started from the same initial condition:{180 large, 200 small} in
compartment A, and{120 large, 400 small} in B. The squares cor-
respond to the large beads, and the diamonds to the small ones.
Solid symbols refer to compartment A, and open symbols to B; note
that every measurement is thus represented by two points, which
accounts for the mirror-symmetry of the plot in the vertical
direction.
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plots: The flux function is considerably smaller for weak
shaking, confirming the fact that the clustering process takes
much longer there.

With the above flux function we are now in a position to
calculate the dynamics of our two-compartment system,
starting from any initial condition, and for any shaking
strength. The evolution of the number of particlesNiA in
compartment A(i =1, 2) is given by the net balance between
the (outgoing) flux from A to B and the(incoming) flux from
B to A:

dNiA

dt
= − FisN1A,N2Ad + FisN1B,N2Bd

= − FisN1A,N2Ad + FisP1 − N1A,P2 − N2Ad, s13d

where we have used particle conservation,NiA+NiB=Pi. The
evolution of the(complementary) particle numbers in com-
partment B is governed by the same equation with A and B
interchanged.

IV. COMPARING THE FLUX MODEL, EXPERIMENT,
AND MD SIMULATIONS

A. Competitive clustering for size ratio c=2

The predictions from the flux model, calculated from Eqs.
(10)–(13), are found to be in good quantitative agreement
with our experimental results. In Fig. 8 we compare model
predictions and experimental data for a mixture ofP1=300
large andP2=600 small steel beads, with size ratioc=2,
starting always from the same initial situation:

hN1As0d,N2As0dj = h180,200j in compartment A,

hN1Bs0d,N2Bs0dj = h120,400j in compartment B. s14d

Both in the model and in experiment we recover the three
different regimes observed in the Introduction: For vigorous
shaking(regime O,D,10) the system quickly settles into a
symmetric state with equal amounts of small and large par-
ticles in both compartments. At moderate shaking(regime I,
10,D,140) the clustering takes place in compartment A,
the one initially containing the majority of large particles.
This regime has been indicated by a light(yellow) shading in
Fig. 8 and in all figures that follow. At even milder shaking
(regime II, D.140) the clustering takes place in compart-
ment B; for this regime we use a darker shading(blue).

The time scale of the clustering grows with increasingD.
This is illustrated in Fig. 9, where the evolving particle num-
bersNiAstd andNiBstd (evaluated by the flux model) are given
at D=100 and 200, respectively. In the first case, the cluster-
ing is complete already after 150 s, whereas in the latter case
it takes almost a hundred times as long. In agreement with
our experimental observations, the small particles cluster
first, and only when nearly all of them have reached their
final destination the large ones follow. The clustering times
obtained from the flux model are in reasonable agreement
with the experimental observations, including a sudden jump
in the time scale at the transition from type-I to type-II clus-
tering: Just before the transition the clustering(into box A) is

experimentally found to be about 10 times as fast as just after
the transition(into box B). This jump is also found in the
time scales evaluated from the flux model.

In order to see what causes the transition from regime I to
II we make flow diagrams(see Fig. 10) that show how the
particle numbersN1Bstd andN2Bstd in compartment B evolve,
for any initial condition. The arrows indicate the dynamics of
the system, and the cross denotes the initial condition that
was used in the experiments[specified in Eq.(14)].

For very strong shaking[Fig. 10(a), D=1] only one fixed
point exists: the stable uniform distribution{150, 300} in the
center of the flow diagram. The system quickly approaches
this point regardless of the initial condition.

At D=20, just beyond the pitchfork bifurcation, the ho-
mogeneous state has become unstable and has given way to
two new stable fixed points. These correspond to compart-
ment B being either comparatively empty(fixed point in the
lower part of the flow diagram, type I clustering) or well
filled (upper part, type II). The basins of attraction for these
two points are indicated by the shading: Any initial condition
in the light (yellow) region will lead to a cluster in box A,
while initial conditions lying in the dark(blue) region lead to
a cluster in box B. The initial condition for the experiments
of Fig. 8 (indicated by the cross) lies in the yellow basin, so
this one leads to a cluster in compartment A. The arrows
indicate that first the small particles settle into their preferred
distribution over the compartments, and that the large ones
follow later (as we also noted in the plots of Fig. 9). At this
relatively small value ofD the small beads are still divided
over the two compartments, but the large beads already clus-
ter heavily: This is in agreement with the bifurcation diagram
of Fig. 8.

For D=80 the clustering has become much more pro-
nounced, since also the small beads accumulate into the
same compartment. We furthermore note that the boundary
between the two basins of attraction has shifted and is now
almost horizontal.

At very mild shakingsD=200d, the boundary between the
two basins of attraction has shifted again. The initial condi-
tion (the cross) now lies within the blue basin of attraction,

FIG. 9. Evolution of the system calculated from the flux model,
starting from the initial condition Eq.(14), for (a) D=100 (type-I
clustering) and (b) D=200 (type-II clustering). The solid curves
represent the number of particles in compartment A; the dashed
ones compartment B. It is seen that the small particles(lower row)
cluster first, followed by the large ones(top row). Note the different
time scales between type-I and type-II clustering.
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and we end up with nearly all particles in compartment B.
The same plot shows that the fixed points move further into
their corners for increasingD, i.e., the clustering becomes
more pronounced for decreasing shaking strength. This fea-
ture was apparent already in Fig. 1, and has been observed
earlier also for clustering in a monodisperse gas, i.e., forc
=1 [7,8].

Interestingly, the boundary between the two basins of at-
traction is found to move(as function ofD) in a nonmono-
tonic fashion. FromD=20 to D=80 it is seen to straighten
out towards an almost horizontal position, but fromD=80
onwards it starts to slant again and at the same time develops
a curve. At some point betweenD=200 andD=250 it goes
through the diagonal position and eventually seems to come
to a standstill. We shall not pursue the limit for very high
values ofD, however, since here the shaking becomes so
weak that no particles are able to jump over the wall any-
more: Any clustering predictions in this limit will no longer
be reproducible in experiments or MD simulations.

The motion of the basin boundary shows that competitive
clustering does not occur forall initial situations: Only a set
of conditions in the lower right quadrant and(equivalently)
the upper left quadrant can be directed into either compart-
ment by tuning the shaking strength. On the other hand, there
is also a region through which the boundary sweeps twice, so
here we findtwo consecutive transitions between the cluster-
ing regimes I and II asD is varied. The initial condition used
in the experiment lies just outside this double transition re-
gion; had it been chosen slightly differently, the bifurcation
diagram of Fig. 8 would have had an additional band of
type-II clustering between regimes O and I. The twist in the
small-particle curve immediately after the pitchfork bifurca-
tion at D=20 is a “ghost” of this band.

B. Exploring the parameter space:
Dependence on size ratio„c… and relative abundance

of large and small particles„s…

1. Size ratioc

How do the above observations generalize to size ratios
c=r1/ r2 differing from 2? This ratio has a marked effect on
the criticalD values where the transition from the regimes O,
I, and II take place. In Figs. 11 and 12 we show the position
of these regimes as a function ofc andD, for the same initial
condition that was specified in Eq.(14). The drawn curves
have been calculated from the flux model, and the symbols

FIG. 10. Flow diagrams calculated from the flux model(for the same system as in Figs. 8 and 9) showing how the contents of
compartment B evolve at five successive values of the shaking parameter:(a) D=1, (b) D=20, (c) D=80, (d) D=200, and(e) D=250. The
cross indicates the initial condition used in the experiments:hN1Bs0d ,N2Bs0dj=h120,400j. At D=1 there is no clustering and all initial
conditions lead to the uniform distribution(the central point in the flow diagram). For D=20, …, 250 all initial conditions in the light
(yellow) basin of attraction lead to a comparatively empty compartment B(type-I clustering) and those in the dark(blue) basin of attraction
lead to a well-filled compartment B(type-II clustering). Note that the slope of the boundary between the two regimes shows nonmonotonic
behavior as a function ofD. Part(f) shows the region ofcompetitiveclustering: The boundary between the two basins of attraction in(a)–(e)
sweeps through this region, and therefore the initial conditions here lead to either type-I or type-II clustering depending on the value ofD.

FIG. 11. Phase diagram, showing the three clustering regimes as
a function of the inverse shaking strengthD and the size ratioc
=r1/ r2. The drawn curves are calculated from the flux model, and
the symbols correspond to experiments: open circles
=no clustering, crosses=type-I clustering, and red triangles=type-II
clustering. The experimental results on the vertical dashed linec
=2 also feature in Fig.8. The initial condition is always taken to be
as in Eq.(14).
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are data from experiments(Fig. 11) and MD simulations
(Fig. 12). The vertical dashed line in Fig. 11 corresponds to
the casec=2 studied in the previous subsection.

It is seen that forc,1.5 the transition from regime O to
regime II is immediate: here the larger beads are not suffi-
ciently big to compensate for the fact that they are a minor-
ity. It is the larger number of beads that decides where the
cluster goes, just as for the monodisperse casesc=1d. On the
other hand, for high values ofc, the dominant size of the
large beads always makesthemthe decisive factor(only re-
gime I survives). It is precisely the intermediate region 1.5
,c&2.3 in which the competition takes place: The curving
border between regimes I and II indicates the critical value of
D where the basin boundary sweeps through our initial con-
dition (14). For c<1.6 the boundary sweeps twice through
this initial condition and we witness the particularly interest-
ing sequence 0-II-I-II, both in the model and in experiment.

Both in experiment(Fig. 11) and in the MD simulations
(Fig. 12) the actual border between regimes I and II is found
to lie more to the right than predicted by the flux model. This
shift of the borderline means that the “counterintuitive”
type-II clustering is even stronger than predicted by the flux
model. This may be understood from the fact that the mobil-
ity of the large beads is underestimated by the flux model,
which assumes the granular temperatures for the large and
the small beads to be equal. In reality(in experiments and
MD simulations) the temperature of the large ones is known
to be higher, and therefore the type-II scenario in which the
majority of large beads switches compartment occurs some-
what easier than suggested by the flux model.

2. Relative abundances

In the experiments and simulations so far we have always
used mixtures in which the number of large particles was
half the number of small ones:s=P1/P2=1/2. Let us now
have a brief look at other compositions, since obviously this

parameters must have an important influence on the clus-
tering behavior: A larger value ofs means that the large
beads become a more important minority(or even a majority
for s.1), and hence type-I clustering will gain ground. This
is indeed the case, as illustrated by Fig. 13 fors=1/6 and 1.
The initial condition we use here(h 3

5P1, 1
3P2j in compart-

ment A andh 2
5P1, 2

3P2j in compartment B) is equivalent to
the one taken in all previous experiments and simulations
[Eq. (14)], but due to the change inP1 andP2, the absolute
number of particles initially inserted into the two compart-
ments are different.

The position of all the lines(i.e., transitions) in the phase
diagram are affected by the changing particle numbers. Take,
e.g., the value ofD at which the transition from regime O to
II occurs in the monodisperse limitc=1. This clearly goes
down as the total number of particles in the system increases:
In Fig. 12 (with P1+P2=900) the critical D-value exceeds
40, while in Fig. 13(a) (with P1+P2=1400) it lies below 20.
The physical reason for this is that the larger number of
particles induces more collisions, and hence the dissipation
rate increases, so stronger shaking is necessary to obtain the
homogeneous distribution. According to the monodisperse
flux model [7,8,32] the criticalD-value forc=1 goes as

Dc,c=1 ~
1

sP1 + P2d2 . s15d

That is, the product ofDc,c=1 and sP1+P2d2 is exactly the
same in all three plots of Figs. 12, 13(a), and 13(b).

FIG. 12. The same phase diagram as in Fig. 11, for the same
initial situation(14), but this time the symbols represent MD simu-
lations. Between the regimes of type-I and type-II clustering, there
is also a zone where the clustering in the MD simulations can go
either way, depending on statistical fluctuations. This undecided
state of affairs is indicated by the open squares: Each of them is
based on 10 repetitions of the MD simulation, of which typically
half ended in type-I clustering and the other half in type-II. As in all
previous figures, the ratio of large to small particles iss=P1/P2

=300/600=1/2.

FIG. 13. The same as Fig. 12, but now for(a) s=P1/P2

=200/1200=1/6 and(b) s=600/600=1. For growings (relative
abundance of the large particles) type-I clustering clearly gains
ground. The initial condition used here ish 3

5P1, 1
3P2j in compart-

ment A and(hence) h 2
5P1, 2

3P2j in compartment B, in analogy with
the condition(14) which was taken in all previous figures(where
s=300/600=1/2).
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The border between the two clustered states(regime I and
II ) is affected even more drastically. Particularly the band of
c values where both clustering types can be obtained by
adjusting the shaking strength(competitive clustering) de-
pends strongly ons. For s=1 it is confined to the narrow
band of values 1.2,c,1.5. Here regime I dominates the
phase diagram and the borderline between type-I and type-II
clustering is pushed towards the vertical axis atc=1.

For decreasings the same borderline moves towards the
right and bends down, thereby reducing regime I and broad-
ening the band of competitive clustering. Indeed, in Fig.
13(a) for s=1/6, there is only one point(indicated by the
cross) which consistently gave type-I clustering in our MD
simulations. It is surrounded by a number of points for which
the clustering was undecided, sometimes going in one direc-
tion and sometimes in the other; this is a manifestation of
statistical fluctuations, which are not taken into account in
our mean field approach[34]. Not surprisingly, given the
relatively large values ofc in this region(and the associated
deterioration of the one-temperature assumption, see Fig. 6)
the simulations do not precisely follow the predictions of the
flux model here. Nevertheless, the general trend of the phase
diagram is still well reproduced.

V. CONCLUSION

In conclusion, a simplified phenomenological flux model
quantitatively and consistently captures the physics of the
competitive clustering phenomenon in a bidisperse granular
gas: In the model, just as in experiment and MD simulations,
the clustering can be directed either towards the compart-
ment initially containing the majority of large particles
(type-I clustering) or to the one containing mainly small par-
ticles (type-II), simply by adjusting the shaking strength.

The best quantitative agreement between the numerical
simulations and the theoretical model is found when the size
ratio between the large and small particlesscd is not too
much larger than 1. This can be traced back to the fact that in
the model the granular temperaturesT1 andT2 are assumed
to be equal, which is an accurate assumption only forc close
to 1. Since the region of competitive clustering is found to
move closer and closer towardsc=1 if we let the number of
large particles grow(see Fig. 13), this means that the theory
works best for comparatively large numbers of large par-
ticles.

For smaller large-particle numbers the region of competi-
tive clustering in the phase diagram is pushed towards higher
c values. The theoretical description here becomes less ac-
curate, but still shows the correct qualitative features. Our
MD simulations show that in these regions the borderline
between type-I and type-II clustering widens to a broad zone
where the cluster can go in either direction.
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APPENDIX: DERIVATION OF THE FLUX MODEL

In this Appendix we calculate respectively the left- and
right-hand side of Eq.(7), i.e., the energyinput into a com-
partment via the vibrating bottomsJ0d and the energyloss
through the particle-particle collisionsfVe0

`qszddzg, both per
unit of time. Equating these two quantities leads to the
granular temperatureT of the compartment, given by Eq.(8).

1. Energy input

The energy input comes from collisions of the particles
with the bottom. For simplicity, we assume a sawtooth mo-
tion of the bottom, such that colliding particles always find it
moving upwards with velocityvb=2af. The peak-to-peak
amplitude 2a is taken to be sufficiently small compared to
the mean free path of the particles, so that the bottom is
effectively stationary.

Thus, when a particle with downward vertical velocity
componentvzi collides with the bottom, it is reflected back
with an upward vertical velocity ofvzi+2vb. The energy gain
per collision is equal to the difference in kinetic energy be-
fore and after collision, i.e.,

DEkin = 2mivbsvzi + vbd. sA1d

To obtain the total energy input rate, this expression must be
multiplied by the number of collisions per unit time, which is
1
2nis0duvziuV for each species(with the factor1

2 representing
the fact that half of the particles have a downward vertical
velocity component), and averaged over all possiblevzi.
Now, let us assume that the velocity distribution is Maxwell-
ian and isotropic. As already mentioned in the main text, this
is an approximation both with respect to the Maxwellian
nature [28,29] as to the isotropy(see Fig. 5) to keep the
model as simple as possible. It allows us to setkvzi

2 l= 1
3kvi

2l
=kBT/mi and kuvziul=Î2kBT/pmi, yielding the following ex-
pression for the rate of energy input:

J0 = V o
i=1,2

nis0dSvbkBT +Î 2

p
vb

2ÎmikBTD . sA2d

This equation can easily be generalized to two different tem-
peraturesTi for the speciesi =1, 2, but we will not do so
here. Since the velocity of the bottomvb is typically much
smaller than the velocity of the particlessvb!vid, the first
term in Eq.(A2) is much larger than the second, which we
therefore neglect. The energy input then becomes

J0 = VvbkBT„n1s0d + n2s0d… = gvbsm1N1 + m2N2d,

sA3d

where in the last step we have used Eq.(6).

2. Energy loss

To evaluateqszd, the dissipation rate per volume, we con-
sider a particle of massmi and velocityvi traveling through a
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bidisperse background. If it collides with another particle of
massmj andv j the energy loss will be, on the average(i.e.,
averaged over the collisional cross section):

Eloss=
1

4

mimj

mi + mj
s1 − e2dsvi − v jd2, sA4d

which happens to be preciselyhalf of the energy loss in a
frontal collision.

A collision will happen(within a time intervaldt) if either
of the two particles finds itself in the cross-sectional volume
of the other, which is a cylinder of lengthuvi −v judt and front
areapsr i +r jd2. Hence the collision rate per volume is the
product of the particle densitiesniszdnjszd and this cross-
sectional volume divided bydt, where we assume that the
densities do not vary significantly over this volume.

The dissipation rate per volumefqszdg is found by multi-
plying the collision rate per volume with the energy loss
(A4), and averaging over all possible realizations of the in-
dependently distributed velocitiesvi andv j:

qszd =
1

8
s1 − e2d o

i,j=1

2

niszdnjszdpsr i + r jd2 mimj

mi + mj
kuvi − v ju3l,

sA5d

where we have multiplied by an additional factor1
2 to bal-

ance the fact that in this procedure we count every collision
twice.

To evaluate the ensemble averagekuvi −v ju3l, we note
that—under the assumption of Maxwellian velocity
distributions—all of the components ofvi andv j are distrib-
uted Gaussian with variances(i.e., squared standard devia-
tions) si

2=kBT/mi and similarly fors j
2. Again, it is possible

to generalize this to two different temperaturesTi for the
speciesi =1, 2, but here we will continue to work withT1
=T2=T.

It follows that the components of the combined variable
ui j ;svi −v jd /Î2 are also Gaussian, with zero mean, and its
variances are found by adding those of the(independently
distributed) constituentsvi and v j and dividing by 2:s2

=kBT/2mi +kBT/2mj. The distribution functionPsui jd thus
equals

Psui jd =
1

s2ps2d3/2e−uij
2/2s2

= S mimj

smi + mjdpkBT
D3/2

expH − mimjuij
2

smi + mjdkBT
J ,

sA6d

whereuij = uui j u, and with this we can calculate

kuvi − v ju3l = 2Î2kuui j u3l = 8pÎ2E
0

`

uij
5Psuijdduij

=
16

Î2p
SkBTsmi + mjd

mimj
D3/2

. sA7d

Inserting this expression in Eq.(A5) we find

qszd = Î2ps1 − e2dskBTd3/2o
i,j=1

2

ninjsr i + r jd2Smi + mj

mimj
D1/2

= 8Îps1 − e2dskBTd3/2Sn1
2r1

2

Îm1

+
n2

2r2
2

Îm2

+
n1n2sr1 + r2d2

2Î2Îm12
D ,

sA8d

with m12=m1m2/ sm1+m2d the so-called reduced mass. The
energy dissipation rateQ now follows by integratingqszd
over the whole volume of the compartment:

Q = VE qszddz

= Î2ps1 − e2dskBTd3/2

3 o
i,j=1

2

sr i + r jd2Smi + mj

mimj
D1/2E

0

`

niszdnjszddz. sA9d

The integral in the above expression is readily evaluated us-
ing Eqs.(5) and (6):

E
0

`

niszdnjszddz=
g

V2kBT

mimj

mi + mj
NiNj , sA10d

with which we finally obtain

Q =
4Îpgs1 − e2d

V
ÎkBTSÎm1r1

2N1
2

+ Îm2r2
2N2

2 +Îm12

2
sr1 + r2d2N1N2D . sA11d

Equating the two expressions for the rate of energy input
[Eq. (A3)] and energy loss[Eq. (A11)] yields the granular
temperatureT given in Eq.(8) in the main text.
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