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Competitive clustering in a bidisperse granular gas:
Experiment, molecular dynamics, and flux model
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A compartmentalized bidisperse granular gas clusters competifiRellikkelsen, D. van der Meer, K. van
der Weele, and D. Lohse, Phys. Rev. L&8, 214301(2002]: By tuning the shaking strength, the clustering
can be directed either towards the compartment initially containing mainly small particles or to the compart-
ment containing mainly large particles. Here, the conditions under which this competitive clustering occurs are
studied experimentally, numericalipy means of molecular dynamics simulatiprsnd analytically. A mini-
mal model is derived that quantitatively accounts for the observed phenomena.
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. INTRODUCTION: EXPERIMENTAL OBSERVATIONS For very strong shakingnot shown the large and small
particles distribute themselves uniformly over the two com-
Clustering is one of the most characteristic features opartments. This will be denoted as regime 0. In this case, the
granular gases. It not only makes them fundamentally differdissipation from the particle collisions is overwhelmed by
ent from ordinary molecular gases, but also plays a majothe energy input into the system.
role in many industrial applications where granular matter is When we reduce the shaking strength below a certain
sorted or transportefll-5]. The clustering arises from the threshold(see Sec. Il for details starting out from the same
inelastic collisions between the particles: If a region isinitial state, the particles form a cluster in compartment A;
slightly denser than the others, the particles collide moresee Fig. 1, left column. This is regime I. The direction of the
frequently and hence more energy is dissipated. This resultdustering is towards the larger total particle mass. It takes
in the formation of a cluster of slow moving particles. Vice about half a minute for the cluster to develop.
versa, relatively dilute regions are depleted, with only a few For very mild shaking, however, the same initial condition
rapid particles remaining. A particularly clear-cut view of the surprisingly leads to a cluster in tlwther compartment: see
clustering process is obtained in a setup with two compartFig. 1, right column. We will call this regime II. The series of
ments, where verticghot too strong shaking spontaneously events is as follows: At first the large particles stay close to
leads to one well-filled and one nearly empty compartmenthe floor, transferring energy from the vibrating bottom to the
[6-8]. Similar clustering has also been found in a horizon-smaller ones above them, which thereby gain relatively high
tally shaken systerno]. velocities. This is reminiscent of the demonstration experi-
Until now, most attention has been given to clustering inment in which one puts a tennis ball on top of a basketball
monodispersesystems. In this paper we will focus on the and lets them drop together: when they hit the ground, the
clustering behavior of aidispersemixture of large and tennis ball is “launched” and jumps much higher than its
small particles. Recently, we have found that such a mixtureelease heighfl11]. The effect is stronger in the left box
clusters competitiveljy10]: By tuning the shaking strength, (which has more large particleghan in the right box, and
the clustering can be directed either towards the comparthus the small beads go preferentially into the latBx As a
ment initially containing mainly small particles, or to the one consequence, the remaining particles in compartment A be-
containing mainly large particles; see Fig. 1. come more mobile, and after a couple of minutes the first
Our experimental setup consists of a cylindrical glass tubéarge beads also begin to make it over the wall into compart-
with inner diameter 11.2 cm and height 42.2 cm, divided intoment B, where they are immediately swallowed by the de-
two equal compartments by a wall of height 6 cm. The tubeveloping cluster. With every particle that leaves compartment
is mounted on a shaker, which brings the system into a gas\, the process progressively speeds up. In the experiment of
eous state through vertical, sinusoidal vibrations with adjustFig. 1, right column, the clustering is complete after 15 min-
able frequencyf and amplitudea. In Fig. 1 we show two utes.
experimental runs, at different shaking strength, with a mix- In the remainder of this paper we will give a quantitative
ture of P;=300 stainless steel beads of radiys2.50 mm  description of this competitive clustering phenomenon in
andP,=600 smaller ones af,=1.25 mm. The initial condi- terms of a flux model and also through molecular dynamics
tion in both experiments is the samg:80 large, 200 small  (MD) simulations. Our goal is the construction of a minimal
in the left compartmen¢A), and {120 large, 400 smallin  model that describes the clustering phenomena, rather than a
the right compartmentB). This means that in the initial general kinetic theory of the bidisperse gas. Specifically, we
situation 55% of the total particle mass is in compartment Amake three important simplifying assumptions regarding the
Only the lower third part of the tube is shown in Fig. 1, sinceenergy equipartition in mixtures, the barometric height dis-
particles rarely go up all the way to the top lid. tribution, and the Maxwellian velocity distribution. Though
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t=0s throughout the three-dimensional compartment.

In Sec. Il, MD simulations are employed to check two of

the main approximations used in the flux model, namely, that
ml“del’)a‘e s'}aki';g h_“‘lil“I’)Sh“k_i“g . the particles in each compartment obey a barometric height
GovDregieme T (righ:D; regtme TD) distribution, and that the small and large particles have
roughly the same granular temperature. In Sec. Il the flux

/ = model is worked out. In the main text we emphasize the

physical ideas, while the mathematical derivation is given in

an Appendix.

In Sec. IV we show, on the basis of the flux model, that
the transition from regime | to 1l is directly related to a shift
of the boundary between the basins of attraction associated
with the two different clustered situations. We also study the
dependence of the clustering behavior on the size ratio
=r,/r, and the total particle numbeR; andP,. Predictions
from the flux model are put side-by-side with measurements
obtained from MD simulations and laboratory experiments,
and fair agreement is found. Finally, Sec. V contains con-
cluding remarks.

Il. MD SIMULATIONS FOR ONE COMPARTMENT
A. Numerical scheme

For the simulations we use a three-dimensional event
driven code: Between two eventsollisiong the particles
move freely, describing parabolic paths under the influence
of gravity, until the next collision occurs. A collision can be
either between particles or between a particle and a wall, and
is signaled by a spatial overlap of the two. At such an event,

FIG. 1. Images from two experiments with a bidisperse mixturethe velocities of the particles after contact are computed from
of steel beads, starting from the same initial condition. For relath€ velocities just before contact using Newton's laws.
tively strong shaking(left column the clustering is directed to- The particles are taken to be hard spheres. This means that
wards theleft compartment, whereas for mild shakigght col- ~ We ignore any deformations, which for the steel particles
umn) it goes into theright compartment. The shaking frequency in used in our experiments is a reasonable approximation. The
the left column isf=60.0 Hz, and in the right column 37.5 Hz, coefficient of normal restitutiore for particle-particle colli-
while the peak-to-peak amplitude in both casesds2 mm. The  sions is taken to be constart=0.85, and the same for the
initial condition (topmost picturgis {180 large, 200 smallin the  large and small beads. The coefficients of tangential restitu-
left compartment, and120 large, 400 smdllin the right one. With  tion and dynamical friction are adjustable in the code, but for
the radius of the large beadis =2.50 mn) being twice that of the  the simulations presented here they are set equal to their
small oneqr,=1.25 mm), this means that initially 55% of the total jdeal (dissipationlesgvalues.
particle mass is in the left compartment. The coefficients of restitution between the particles and

the walls and bottom can be adjusted independently. For the
it may appear that our minimal model bypasses the state qfoefficient of normal restitution we use 0.95, obtained from
the art in granular matter, it is definitely sufficient to accounttest experiments in which we let the beads bounce on solid
for the experimental and numerical results on competitiveplates of glasgrepresenting the wallsind aluminunifor the
clustering. bottom).

Throughout the paper we will work with particles of the  For simplicity, the experimental setup is simulated as a
same material, which thus have the same material depsity rectangular box with infinitely high side walls. The ground
and will be taken to have one constant coefficient of restituarea of each compartment, and also the height of the wall
tion ¢ that is, we neglect the dependences@n the velocity  between them is the same as in the actual experiment. The
and size of the particlel2,13. The number of particles is bottom is vibrated vertically with adjustable frequerfcgnd
taken such that at rest they form one to two layers on themplitudea following a sinusoidal wave form.
bottom of the container. This number is sufficiently large to
keep the relative effect of statistical fluctuations limited, and
thus to allow for a mean field description. On the other hand,
it is small enough to keep the gas reasonably dilute even in One of the main assumptions in the bidisperse flux model
the clustered situation. The clusters in Fig. 1 look very densgsee Sec. Il is that the granulatemperatures Tand T, of
but this is an optical illusion due to the fact that the particlesthe large and small particles are independent of the height
are projected onto a plane; in reality they are scatteredhis assumption leads to the barometric height distribution,

B. Height distribution and granular temperature
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FIG. 2. Molecular dynamicsMD) simulation results for a FIG. 3. Same as Fig. 2, but now for a bidisperse granular gas

monodisperse granular gésize ratioy;=1) shaken at frequench  consisting of 300 large and 600 small particles with size ratio
=70 Hz and amplitud@=1 mm. Shown are the particle number -2 The small particles have the same size as those in Fig. 2, i.e.,
density(left) and the granular temperatuight) as function of the 1 -1 25 mm. The density profiles of both the large and the small
heightz. The ground area of the container(=100 cnf (equiva-  particles follow straight lines, indicating an exponential decay with
lent to the experimental setup of Fig. 1 without the centralwile 7 (parometric height distribution The right plot shows that the
number of particles i®=900, their radius is 1.25 mm, and the plots granular temperature of the large beads is larger than that of the
are based on fumerical snapshots of the gas in its steady stategmall beads. The slanting lines at the top of the temperature profiles

sampled at a rate of 1000 per second. The scale used in these pli§respond to free parabolic flights of single particles; see also
is the same as in Figs. 3 and 4, to allow for a comparison with the-jg 5

bidisperse case.
In all three cases Idg;(z)] (for i=1 and 3 follows an

just as in an ordinary gas. That is, the number densities afipproximately straight line, indicating that the density pro-
both speciegi=1,2) are taken to decay exponentially with ~ files of both large and small beads indeed decay exponen-

B tially, with the large-patrticle profile decaying faster, in agree-

ni(z) = n(0)e™™97 . ment with Eq.(1). Only at smallz the profiles deviate
The temperaturd; is defined in analogy with the standard Significantly from the straight line. This is caused by the
relation from statistical phySiC%vaiz):%kBTi, where the V|_brat|ng roor:. Many of the pamcles he_re have a relatively
Boltzmann constarks is to be replaced by a mere number. high energy, since they have just been kI.Cked by the floor but
¥ . N _1 PN ~have had no chance yet to pass on their energy to the other
ere we will choos&g=1. SoT;=;m(v;), directly propor . o

. = : . . particles. So the temperature close to the bottom is high and
tional to the mean kinetic energy of the particles of species

. . . is means that the curve of Igg(z)) flattens. Moreover, a
Its value is determined by a balance between the input otfh 0y(2))

o T ery narrow region immediately above the floor is swept
energy d_ue to the_ \_/lbratlng bottom and the dissipation O%élean by the vibrating bottom itself,
energy via the collision§l4].

The second, bolder assumption in the model is that 1 |
=T,(=T). The large and small particles afper compart- 2[m] ofin] ;'.3 o
men) taken to be in thermal equilibrium with each other at 0.8 0.8 demat|”
the samegranular temperature, and Ed) then simplifies to 4' o
ni(z2)=n;(0)exp(-mygz/ T}. For size ratiosy close to unity 0.6 small 0.6 0,2}’-
(the monodisperse limithis is expected to hold well, but for Ve
large values off the correspondence will deteriorate. Several 0.4 0.4 M;;
recent studie$15—-20 have shown that energy equipartition large
generally breaks down in bidisperse granular gases, with the 0.2} targe 0.2 S
heavier particles having a higher temperature. @
In particular, Wildman and Parke[l5] used positron 0~ 3 0 =

10" 100 10° 107 0O 1 2 3

emission particle tracking to experimentally determine the n @) [1/1] T@ [0 ]]

granular temperature in a vibrofluidized mixture of glass
beads with radif,=2.5 mm and';=2.0 mm(;=1.25. They FIG. 4. Same as Fig. 3, but now for size raife3. The densi-

found that the temperature of the larger particles was alwayt?es of the large and small particles still follow an approximately

higher than that of the smaller ones. Keeping the total parg,nonential decay. The temperature shows considerable deviations

ticle mass in the system the same, the temperature ratigym 4 constant value, especially for the large particte® also the
T,/T, could be raised by increasing the ratiBy/P;) be-  jnset, in which the same profiles are shown on a different scale
tween the numbers of large and small beads. however, the upper region of the temperature profile is made up by

To check the temperature ratio and the density profiles imnly a few particles and has hardly any statistical weight. It is
our own system, we performed MD simulations. In Figs. 2—4apparent that the temperature difference between the large and
the results are shown fap=1, 2, and 3, respectively. small particles has increased with cf. Fig. 6.
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T,x(2) [107)] T,y (2) 10™] T,,(2) 10™] FIG. 6. Temperature rati®;/T,, determined from MD simula-

tions, as function of the size ratip=r/r,. The values are taken at
FIG. 5. Thex, y andz components of the granular temperature z=0.075 m, which lies in the “constant” part of the large-particle
for the bidisperse mixture of Fig. 3=2. These temperature com- temperature profile for each.
ponents are directly proportional to the kinetic energies of the par-
ticles: Ti,x=§mivfx, etc.(i=1, 2 denoting the large and small par-

) ! and are not thwarted by the surrounding small ones, are
ticles, respectively

clearly visible in Fig. 3(and Fig. 5 aroundz=0.22-0.35 m.

An interesting observation is that the small particles in thgndeed, the pronounced increase of the large-particle tem-
bidisperse situation@igs. 3 and #reach considerably larger perature toward the top of their range is due to the fact that

heights, and have a higher temperature, than the same pép_e large particles observeq at these heights are th_e ones that
ticles in the monodisperse situation of Fig. 2. This is theh@ve chanced to fly up straight from the bottom, with(op

“tennis ball on basketball” effect mentioned in the Introduc-VeY few collisions on the way up. The increase of the tem-

tion. The maximum height reached by the small particle@erat“re profile here thus roughly reflects the temperature

increases withy, i.e., with the growing size of the larger P€ak at the bottom. _
particles. The simulations show that the large particles have a

The above characteristics are also reflected in the tenfligher temperature than the small ones, in agreement with
perature profiles. The temperature is found to be roughl}he results f'ound in the recent literature on thl_s subject
constant except at the bottom and top. Close to the bottorit-o—20. In Fig. 6 the temperature rati, /T, as estimated
the temperature is significantly higher, especially for theffom our MD simulations, is given as a function of the size
large particles. That this is indeed caused by the verticafalio #=r1/ro. The values in this plot hold at a height where
kicks from the vibrating floor is shown in Fig. 5, where the e temperature profiles of both species are approximately
individual x, y, and z components of the temperature are ONstant; in the present case we have chase&n075 m for
given (for ¢=2): For the large particles, the component each value ofy. They can be read off directly from the

close to the bottom is seen to be almitseetimes as high as  (€mperature profilegsee Figs. 2—4 or indirectly from the

the other two components. density profiles, by using the following relation between the
In the bulk of the profilg(the long central paytthe tem-  Slopes[from the barometric height equatief)] :

perature components are roughly equal, which means that.the slope large-particle profile m,T, T,

velocity distribution is approximately constant and isotropic - - = ==, (2

here. slope small-particle profile myT; T,

The upper part of the temperature profile shows considerBoth methods yield the same value for the temperature ratio.
able fluctuations. The reason for this is that the particle den- |n summary, we find that both species are not in equilib-
sity is rather low here, sa) the statistics is relatively poor rium with the same granular temperature unless their mass
and (b) the collisions between particles are rare, whichratio is one. On the other hand, even fgr2, where the
makes the equipartition of energy via collisions less effeccorresponding mass ratin;/m, is 8, the temperature ratio is
tive. In this region the mean free path of the particles in-siill less than 1.7. Here the assumption of energy equiparti-
creases rapidly with height and their kinetic energy is primation (with T,/T,=1) is still a meaningful first approximation.
rily converted into potential energy due to gravity and not
lost in collisions.

In the uppermost regioabovez=0.9 m in Fig. 5 we see ll. FLUX MODEL
the ballistic behavior of an individual small particle that
freely travels upward, reaches the tolocity in thez di-
rection becomes zero a=1.10 m, outside the plgtand The flux model describes the flow of large and small par-
goes down again. The velocity components in thandy ticles between the compartments, as a function of the particle
direction remain practically constant during this parabolicnumbers in each compartment and of the shaking strength. It
flight [21]. A ballistic regime is also apparent in the tempera-is a bidisperse generalization of Eggers’ model for a mono-
ture profiles of the larger patrticles: two parabolic flights thatdisperse granular g43]. For its derivation we first consider
go considerably higher than the rest of the large particlesthe gas in a single compartment, and from its steady state

A. Basic equations and approximations
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behavior determine the so-call@dx function,i.e., the num- *
ber of particles of each species that leaves the compartment Jo=0
per unit time[22]. In order to keep the model transparent, we
make three main approximative assumptions that are high- . . . L
lighted below. PP P gr‘l-|ere Jo is the energy input rate, arg(z) is the dissipation
Barometric height distributionThe particles in each com- rate per volume. For the sake of simplicity we neglect the

partment are taken to obey the following equation of statee"eray loss re;u_ltlng from _coII|S|ons with the V‘.'a"’ €., we
[23]: treat those collisions as being completely elastic.

Maxwellian velocity distributionThe third important sim-
plification is that we assume the velocity distribution of the
3 : . : ; > ;
particles to be Maxwellian and isotropic. This is an approxi-
mation, both with respect to the Maxwellian nat(s,29
as to the isotropysee Fig. 3, allowing us to calculate both
sides of Eq(7) in closed form. This is done in the Appendix
and we arrive at the following expression for the granular

q(2)dz. ()
0

pi = nikgT;

(the ideal gas law, withkg=1 in the present contexand the
momentum balance

dp =—mgn, (4)  temperaturel of the compartment:
(2af)*u
for both species=1, 2 separately. Combining these two kBT=_16W(l_62)z' (8)

equations under the assumption that the granular temperature
T,=(m/3kg)(v;)?> is independent ofz gives kgT,dn/dz

. ' : i where the effective mass is given by
=-mgn. Integration gives the barometric height formula:

Q(myN; + mpN,) )2

ni(2) = n;(0)e m9ZkeTi, (5)  m(Ny,Ny = ( — — :
I I rIVmNG + 15 mpNG + (ry + rz)z\"%mlleNz

In the previous section we saw that this exponential distribu- 9

tion describes the real situation remarkably well, given the

fact that both the ideal gas la@8) and the assumption th&t  with my,=m;m,/(m;+my). It is through this quantity. that

is independent of only hold in an approximate sense. One the particle numbers of the two species enter the temperature.
might make the agreement even better by using a more ré®ne may check that in the monodisperse linit=r,
fined equation of statf24—24 and by lettingT vary withz ~ =r m;=m,=m) it reduces to MlFl:Q?m/[rZ(Nﬁ N,)]?

[27], but this would make an analytical expression for the=m{x()/total projected area of the partic}dsi.e., the par-

flux function very difficult(if not impossiblg while not af-  ticle mass divided by the square of a dimensionless filling
fecting the resulting height distribution too much. factor.

Energy equipartition The assumption that both species  The temperature from Eq8) compares well with the
have the same granular temperat(ire=T for i=1, 2) strictly  temperatured; andT, of the large and small particles in the
speaking means that we confine ourselves to size ratios MD simulations of Figs. 2—4. Indeed, far=2, 3 one finds
close to 1; see Fig. 6. Nevertheless, alsoyfer2 and even  the temperature from E@8) to be in betweeiT; andT,. It is
for =3 the model turns out to give results that closely agreesjightly larger (about 10% than the weighted average ®f
with our experiments and MD simulations. This implies thatand T,, as can be understood from the idealizations in the
the inequality ofT; and T, does not play an essential role in model. For example, the model does not take into account
the competitive clustering effect, and the assumpliefiT,  the dissipation from the particle-wall collisions, and assumes
=1 may thus be viewed as an application of Occam’s razor iy sawtooth driving instead of the sinusoidal driving used in
order to keep the theory as simple as possible. In the Appenhe simulations.

dix we will indicate how the model can be extended to a
temperature ratid,/ T, different from 1. _
The density at ground level in E@5) follows from the B. Flux function

condition Qfoni(z)dz=N;: The central quantity of the model is the flux functibp
defined as the number of particlesf species) that leaves
the compartment per unit time. It is the product of half the
density%ni(z) (so that we count particles moving in one di-
rection only and the average horizontal velocigwhich is
where N; is the number of particlesof speciesi) in the equal to\2kgT/7m;) integrated over the space above the
compartment under consideration afids its ground area.  wall (width b) from z=h to some cutoff heighh+H. Above

The temperaturd should be interpreted as an averagethe cutoff height, the state variables of the two compartments
value for the whole compartment. Its value is determined byare in equilibrium and hence no net flux occurs. In principle,
balancing the energy input via the vibrating bottom and theH will depend on the mean free path of the particles, but here
energy loss through the interparticle collisigi®th per unit  we take it to be constant. The integration is then straightfor-
of time): ward [30]:

migN;

QkgT’ ©

ni(0) =
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FIG. 7. The small-particle flu¥,(N;,N,) as a function ofN,
for various numbers of large particles in the compartméht=0
(dashegl N;=120(thin), andN;=180(thick). For D=60 (relatively
strong shaking; left plgtthe flux from a compartment witti180
large, 200 small particles(indicated by the left dotis smaller than
from a compartment with120 large, 400 small particles(right
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FIG. 8. Bifurcation diagram showing the three different cluster-
ing regimes O, |, and Il. The particle numbéts(i=1,2) are given
relative to the symmetric solutiomli—%Pi. The curves represent
the steady state according to the theoretical flux model and the
squares and diamonds are experimental data. For the experiments
we used the setup shown in Fig. 1, filled with a mixture of stainless
steel beadsP;=300 large ones with radius;=2.5 mm, andP,
=600 small ones with radius,=1.25 mm. Every new run was
started from the same initial conditiog180 large, 200 smallin

dot). Hence the clustering is towards the former compartment, i'e'compartment A, and120 large, 400 smallin B. The squares cor-
type | clustering, in agreement with the experimental observation OFespond to the large beads, and the diamonds to the small ones.

Fig. 1. ForD=200 (weak shaking; right plotit is the other way

Solid symbols refer to compartment A, and open symbols to B; note

around, leading to type I clustering, again in agreement with €Xy,a¢ every measurement is thus represented by two points, which
periment. The “tennis ball on basketball effect” is most pronounced,..qunts for the mirror-symmetry of the plot in the vertical
on the left flank of the flux function, where the small-particle flux direction.

from the compartment actuallsises (with respect to the dashed

curve) upon adding large particles. Note the different scales of the For N;=0 (no large patrticles in the compartment, dashed
vertical axis in the two plots: the stronger the shaking, the higheccurve) the flux function has the well-known monodisperse

the particle flux.

1 [2kgT, (MH
Fi(Ny,Np) = E ﬁbf ni(2)dz
i h
| kT bN, _ _

— —a mghVkgT 1-¢ migH/kgT
m.

~KNj/—ePmx =12,
M

In the last step we have linearized éxmgH/kgT), imply-
ing thatH <(v?)/g, and expressellsT in terms of the par-
ticle numbersN; by means of Eq8) and(9). The prefactor
K determining the absolute rate of the flux is given[By]

gbH
QO(2af)’

and the dimensionless paramegrwhich governs the clus-
tering behavior, has the form

(10

K=2V2(1-&) (12)

" _1-ap2

D=16x
(2af)?

(12)

form studied in Refs[7,8,32,33. It starts out from zero at
N,=0 (expressing the fact that there is no particle flux from
an empty compartmenand initially increases with growing
N,. For any ordinary molecular gas it would always keep
increasing, but for a granular gas it is seen to reach a maxi-
mum and goes down again: The inelastic collisigwhich
become more and more frequentNisgrows) make the par-
ticles slow, until they are hardly able to jump over the wall
anymore and the flu¥,(0,N,) approaches zero in the limit
for Ny — oo,

For N;=120 (thin curve and N;=180 (thick curve the
maximum of the flux function decreases as compared to the
situation without large particleedashed curve due to the
much larger total mass in the compartment. However, on the
left flank there is a region where the drawn curves are actu-
ally higherthan the dashed one. This is an illustration of the
“tennis ball on basketball effect” mentioned in the Introduc-
tion, with the small particles becoming more mobile thanks
to the presence of the larger ones.

One can deduce the type of clustering that results from the
plots in Fig. 7. Let us start, just as in the experiments of Fig.
1, with {180 large, 200 smallparticles in one compartment
(A) and {120 large, 400 smdgllparticles in the othe(B). In
the left plot, forD=60, we see that the flux from compart-

The influence of the large particles on the small-particlement A(indicated by the left dotis smaller than from com-

flux (and vice verspis contained in the parametgr, given
by Eq.(9).

In Fig. 7 we show the small-particle flux,(N;,N,) as a
function of N,, at D=60 (relatively strong shakingand D

partment B(right dof). Hence the direction of clustering is
towards A, i.e., type | clustering, in agreement with the ex-
perimental observation of Fig. (kee also Fig. B In the plot
for D=200 it is precisely the other way around, resulting in

=200 (weak shakingrespectively, for three different values type Il clustering, again in agreement with experiment. Note

of the number of large particles;.

also the different scales along the vertical axis in the two
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plots: The flux function is considerably smaller for weak 300 300 .
shaking, confirming the fact that the clustering process takes _fA A ;
much longer there. N K 1" M ep———e—r
With the above flux function we are now in a position to o> B 0

calculate the dynamics of our two-compartment system, t 1000 t 15000
starting from any initial condition, and for any shaking 600 600
strength. The evolution of the number of particlds, in N [A N
compartment Ai=1, 2 is given by the net balance between 2 h B 2
the (outgoing flux from A to B and thgincoming flux from 0| TR 0 A
B to A: t 1000 t 15000

AN, (a) (b)

— =~ Fi(N1a,N2a) + Fi(N1g,Nog) _

dt FIG. 9. Evolution of the system calculated from the flux model,

_ starting from the initial condition Eq.14), for (a) D=100 (type-I

=~ FilNiaNoa) + FilPr = Nua P2 = Now),— (13) cluster?ng and (b) D=200 (type-II ((:Tust)ering.( 'I)'he solid(éﬁ)rves
where we have used particle conservatidp,+Nig=P;. The  represent the number of particles in compartment A; the dashed
evolution of the(complementary particle numbers in com- ones compartment B. It is seen that the small partideser row)
partment B is governed by the same equation with A and Bluster first, followed by the large oné®p row). Note the different
interchanged. time scales between type-l and type-Il clustering.

experimentally found to be about 10 times as fast as just after
IV. COMPARING THE FLUX MODEL, EXPERIMENT, t_he transition(into box B). This jump is also found in the
time scales evaluated from the flux model.
AND MD SIMULATIONS " .
In order to see what causes the transition from regime | to
A. Competitive clustering for size ratio =2 Il we make flow diagramgsee Fig. 19 that show how the
particle number#\;z(t) andN,g(t) in compartment B evolve,

10Thel§) reg:gt'%]jnféo{g tgs iflnux g:)%del&;ﬁlﬁ;ﬁggd;r?;nﬁgi'for any initial condition. The arrows indicate the dynamics of
(10~(13), 9 a g tthe system, and the cross denotes the initial condition that

with our experimental results. In Fig. 8 we compare model

o . . was used in the experimenispecified in Eq(14)].
predictions and experimental data for a mixtureRaE=300 . _ '
large andP,=600 small steel beads, with size ratje=2, For very strong shakinffig. 10a), D=1] only one fixed

starting alwavs from the same initial situation: point exists: the stable uniform distributigd50, 30Q in the
Ing alway : center of the flow diagram. The system quickly approaches

{N;(0),N,(0)} ={180,200 in compartment A, this point regardless of the initial condition.
At D=20, just beyond the pitchfork bifurcation, the ho-

— ; mogeneous state has become unstable and has given way to
{N15(0),N2s(0)} = 1120,400 in compartment B. (14) two new stable fixed points. These correspond to compart-

Both in the model and in experiment we recover the threament B being either comparatively emgfixed point in the
different regimes observed in the Introduction: For vigorouslower part of the flow diagram, type | clusteringr well
shaking(regime O,D <10) the system quickly settles into a filled (upper part, type ) The basins of attraction for these
symmetric state with equal amounts of small and large partwo points are indicated by the shading: Any initial condition
ticles in both compartments. At moderate shakiregime I,  in the light (yellow) region will lead to a cluster in box A,
10<D <140 the clustering takes place in compartment A, while initial conditions lying in the darkblue) region lead to
the one initially containing the majority of large particles. a cluster in box B. The initial condition for the experiments
This regime has been indicated by a ligitllow) shading in  of Fig. 8 (indicated by the crogdies in the yellow basin, so
Fig. 8 and in all figures that follow. At even milder shaking this one leads to a cluster in compartment A. The arrows
(regime I, D> 140) the clustering takes place in compart- indicate that first the small particles settle into their preferred
ment B; for this regime we use a darker shadibtye). distribution over the compartments, and that the large ones

The time scale of the clustering grows with increasihg  follow later (as we also noted in the plots of Fig). @t this
This is illustrated in Fig. 9, where the evolving particle num- relatively small value oD the small beads are still divided
bersNia(t) andN;g(t) (evaluated by the flux modehre given  over the two compartments, but the large beads already clus-
at D=100 and 200, respectively. In the first case, the clusterter heavily: This is in agreement with the bifurcation diagram
ing is complete already after 150 s, whereas in the latter casef Fig. 8.
it takes almost a hundred times as long. In agreement with For D=80 the clustering has become much more pro-
our experimental observations, the small particles clustenounced, since also the small beads accumulate into the
first, and only when nearly all of them have reached theirsame compartment. We furthermore note that the boundary
final destination the large ones follow. The clustering timesbetween the two basins of attraction has shifted and is now
obtained from the flux model are in reasonable agreemerdlmost horizontal.
with the experimental observations, including a sudden jump At very mild shaking(D=200), the boundary between the
in the time scale at the transition from type-I to type-Il clus-two basins of attraction has shifted again. The initial condi-
tering: Just before the transition the clusteriimdo box A)is tion (the cross now lies within the blue basin of attraction,
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.
0 @ N 600 0 © N0 0 ©

FIG. 10. Flow diagrams calculated from the flux modfr the same system as in Figs. 8 andshowing how the contents of
compartment B evolve at five successive values of the shaking paraeter-1, (b) D=20, (c) D=80, (d) D=200, ande) D=250. The
cross indicates the initial condition used in the experimefiisz(0),N,g(0)}={120,400Q. At D=1 there is no clustering and all initial
conditions lead to the uniform distributiofthe central point in the flow diagragmFor D=20, ..., 250 all initial conditions in the light
(yellow) basin of attraction lead to a comparatively empty compartmefyie-1 clustering and those in the darfblue) basin of attraction
lead to a well-filled compartment Bype-II clustering. Note that the slope of the boundary between the two regimes shows nonmonotonic
behavior as a function dd. Part(f) shows the region afompetitiveclustering: The boundary between the two basins of attractida)-Hie)
sweeps through this region, and therefore the initial conditions here lead to either type-I or type-Il clustering depending on th®value of

N,, 600

and we end up with nearly all particles in compartment B. B. Exploring the parameter space:
The same plot shows that the fixed points move further into ~ Dependence on size rati¢s) and relative abundance
their corners for increasin®, i.e., the clustering becomes of large and small particles (o)

more pronounced for decreasing shaking strength. This fea-
ture was apparent already in Fig. 1, and has been observed _ _ _ _
earlier also for clustering in a monodisperse gas, i.e.gfor ~ How do the above observations generalize to size ratios

1. Size ratioys

=1[7,8. Y=rq/r, differing from 2? This ratio has a marked effect on
Interestingly, the boundary between the two basins of atthe criticalD values where the transition from the regimes O,
traction is found to moveas function ofD) in a nonmono- |, and Il take place. In Figs. 11 and 12 we show the position

tonic fashion. FronD=20 to D=80 it is seen to straighten Of these regimes as a function #fndD, for the same initial

out towards an almost horizontal position, but fradx80  condition that was specified in E¢L4). The drawn curves

onwards it starts to slant again and at the same time develoggve been calculated from the flux model, and the symbols

a curve. At some point betwedn=200 andD =250 it goes

through the diagonal position and eventually seems to come 200

to a standstill. We shall not pursue the limit for very high

values ofD, however, since here the shaking becomes so D

weak that no particles are able to jump over the wall any-

more: Any clustering predictions in this limit will no longer

be reproducible in experiments or MD simulations. 100
The motion of the basin boundary shows that competitive

clustering does not occur fall initial situations: Only a set

of conditions in the lower right quadrant agequivalently

the upper left quadrant can be directed into either compart- 0 ‘

ment by tuning the shaking strength. On the other hand, there 1 1.5 ) 2.5 W 3

is also a region through which the boundary sweeps twice, so

here we findwo consecutive transitions between the cluster- £ 11 phase diagram, showing the three clustering regimes as

ing regimes | and Il a® is varied. The initial condition used 5 fynction of the inverse shaking strendthand the size ratios

in the experiment lies just outside this double transition re—r /r, The drawn curves are calculated from the flux model, and

gion; had it been chosen Sl|ght|y diffel’ently, the bifurcation the Symb0|s Correspond to experiments: open circles

diagram of Fig. 8 would have had an additional band of=no clustering, crosses=type-I clustering, and red triangles=type-II

type-ll clustering between regimes O and I. The twist in theclustering. The experimental results on the vertical dashedfine

small-particle curve immediately after the pitchfork bifurca- =2 also feature in Fig.8. The initial condition is always taken to be

tion atD=20 is a “ghost” of this band. as in Eq.(14).
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FIG. 12. The same phase diagram as in Fig. 11, for the same
initial situation(14), but this time the symbols represent MD simu-
lations. Between the regimes of type-l and type-Il clustering, there
is also a zone where the clustering in the MD simulations can go
either way, depending on statistical fluctuations. This undecided
state of affairs is indicated by the open squares: Each of them is
based on 10 repetitions of the MD simulation, of which typically
half ended in type-I clustering and the other half in type-Il. As in all
previous figures, the ratio of large to small particlessisP;/P,
=300/600=1/2.

1 1.5 2 2.5 \/J 3

are data from experimentd=ig. 11) and MD simulations
(Fig. 12. The vertical dashed line in Fig. 11 corresponds to  FIG. 13. The same as Fig. 12, but now f@) o=P;/P,
the casey=2 studied in the previous subsection. =200/120G=1/6 and(b) 0=600/600=1. For growingr (relative
It is seen that fory< 1.5 the transition from regime O to abundance of the large particleg/pe-I clustering clearly gains
regime Il is immediate: here the larger beads are not suffiground. The initial condition used here {§P;,3P,} in compart-
ciently big to compensate for the fact that they are a minorment A and(hence {§P1,§P2} in compartment B, in analogy with
ity. It is the larger number of beads that decides where théhe condition(14) which was taken in all previous figur¢ahere
cluster goes, just as for the monodisperse ¢dsel). On the  0=300/600=1/2

other hand, for high values o, the dominant size of the parametefo must have an important influence on the clus-

'ﬁrge beads_ alwayg mak&;aemthe d?C'S'Ve fa}cto(only re- tering behavior: A larger value of means that the large
gime | su.rwve; Itis preusely 'the intermediate region 1'.5 beads become a more important minotity even a majority
<¢=2.3 in which the competition takes place: The curvingso; > 1), and hence type-I clustering will gain ground. This
border between regimes | and Il indicates the critical value ofs indeed the case, as illustrated by Fig. 13derl/6 and 1.
C . . 3 1 .

B e e acon e Il corton e use e 2Py 103 n compart

So N ) ; : ment A and{gPl,ng} in compartment Bis equivalent to
this initial condition and we witness the particularly interest-the one taken in all previous experiments and simulations
ing sequence O-II-I-1l, both in the model and in experiment.[Eq. (14)], but due to the change iR, and P, the absolute

Both in experimentFig. 11) and in the MD simulations  number of particles initially inserted into the two compart-
(Fig. 12 the actual border between regimes | and Il is foundments are different.
to lie more to the right than predicted by the flux model. This  The position of all the linesi.e., transitiongin the phase
shift of the borderline means that the “counterintuitive” diagram are affected by the changing particle numbers. Take,
type-II clustering is even stronger than predicted by the fluxe.g., the value ob at which the transition from regime O to
model. This may be understood from the fact that the mobildl occurs in the monodisperse limit=1. This clearly goes
ity of the large beads is underestimated by the flux modelgdown as the total number of particles in the system increases:
which assumes the granular temperatures for the large arltl Fig. 12 (with P;+P,=900) the critical D-value exceeds
the small beads to be equal. In realiip experiments and 40, while in Fig. 18a) (with P;+P,=1400 it lies below 20.
MD simulationg the temperature of the large ones is knownThe physical reason for this is that the larger number of
to be higher, and therefore the type-Il scenario in which theparticles induces more collisions, and hence the dissipation

majority of large beads switches compartment occurs somd@t€ increases, so stronger shaking is necessary to obtain the
what easier than suggested by the flux model. homogeneous distribution. According to the monodisperse

flux model[7,8,33 the critical D-value for#=1 goes as
2. Relative abundancer

In the experiments and simulations so far we have always De y=1* (P+—P)2 (15
used mixtures in which the number of large particles was rrre
half the number of small onest=P;/P,=1/2. Let us now That is, the product oD ,-; and (P,+ P,)? is exactly the
have a brief look at other compositions, since obviously thissame in all three plots of Figs. 12, (B3 and 13b).
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The border between the two clustered st@tegime | and  Dutch Science Organization NWO; RM and DvdM acknowl-
II) is affected even more drastically. Particularly the band ofedge financial support.
¢ values where both clustering types can be obtained by
adjusting the shaking strengticompetitive clustering de- APPENDIX: DERIVATION OF THE ELUX MODEL
pends strongly orr. For o=1 it is confined to the narrow . ) )
band of values 1.2 <1.5. Here regime | dominates the !N this Appendix we calculate respectively the left- and
phase diagram and the borderline between type-I and type-fight-hand side of Eq(7), i.e., the energynputinto a com-
clustering is pushed towards the vertical axisjatl. partment via the vibrating bottortJy) and the energyoss
For decreasingr the same borderline moves towards thethrough the particle-particle collisiori§)[5q(z)dz], both per
right and bends down, thereby reducing regime | and broadnit of time. Equating these two quantities leads to the
ening the band of competitive clustering. Indeed, in Fig.granular temperatur€ of the compartment, given by E(B).
13(a) for o=1/6, there is only one pointindicated by the
cros9 which consistently gave type-I clustering in our MD 1. Energy input
simulations. It is surrounded by a number of points for which . . .
the clustering was undecided, sometimes going in one direc- The energy input comes from collisions of the particles

tion and sometimes in the other; this is a manifestation of’.v'th the bottom. For simplicity, we assume a sawtooth mo-

statistical fluctuations, which are not taken into account intlon of the bottom, such that colliding particles always find it

our mean field approacfs4]. Not surprisingly, given the ™M°VIN9 upwards with velocitw,=2af. The peak-to-peak
relatively large values of in this region(and the associated amplitude 2 is taken to be suff|_C|entIy small compared o
deterioration of the one-temperature assumption, see Fig. he mean free-_ path of the particles, so that the bottom is
the simulations do not precisely follow the predictions of theemaCtIVGIy stationary.

flux model here. Nevertheless, the general trend of the phase Thus, when a'partlcl'e with downwa_rd. vertical velocity
diagram is still well reproduced. componentv,; collides with the bottom, it is reflected back

with an upward vertical velocity af,;+2v,. The energy gain
per collision is equal to the difference in kinetic energy be-
fore and after collision, i.e.,

In conclusion, a simplified phenomenological flux model AByin = 2Mp(vzi + vp).- (A1)

quantitatively and consistently captures the physics of therg obtain the total energy input rate, this expression must be
competitive clustering phenomenon in a bidisperse granulamyltiplied by the number of collisions per unit time, which is
gas: In the.model, just asin exper_lment and MD S|mulat|ons,lni(0)|vzi|9 for each specieéwith the factor% representing
the clustering can be directed either towards the co_mparrtzhe fact that half of the particles have a downward vertical
ment initially _containing the majority of Iarge particles velocity component and averaged over all possible;.
(type- clustering or to the one containing mainly small par- Noy, Jet us assume that the velocity distribution is Maxwell-
ticles (type-I), simply by adjusting the shaking strength. o and isotropic. As already mentioned in the main text, this
_ The best quantitative agreement between the numericgl 55 approximation both with respect to the Maxwellian
simulations and the theoretical model is found when the sizg ,+ re [28,29 as to the isotropysee Fig. 5 to keep the
ratio between the large and small particle® is not too model as simple as possible. It allows us to (sép:l@?)
much larger than 1. This can be traced back to the fact that in LT o uiald 3
=kgT/m; and({|v,)=2kgT/mmy, yielding the following ex-
the model the granular temperaturesand T, are assumed ion for the rate of nout:
to be equal, which is an accurate assumption only/folose pression for the rate ot energy input.

to 1. Since the region of competitive clustering is found to 2

move closer and closer towargs=1 if we let the number of Jo=0Q> ni(O)(vkaT+ \/ivﬁ\"kaT). (A2)

large particles growsee Fig. 13 this means that the theory i=1,2 ™

works best for comparatively large numbers of large par-rhis equation can easily be generalized to two different tem-

ticles. _ _ _peraturesT; for the species=1, 2, but we will not do so
For smaller large-particle numbers the region of competitare  Since the velocity of the bottom is typically much

tive clustering in the phase diagram is pushed towards high&finaller than the velocity of the particlés,<uv;), the first

¢ values. The theoretical description here becomes less aGsrm in Eq.(A2) is much larger than the second, which we
curate, but still shows the correct qualitative features. OUtherefore neglect. The energy input then becomés

MD simulations show that in these regions the borderline
between type-I and type-Il clustering widens to a broad zone Jo=QupkegT(n1(0) + Ny(0)) = gup(MNy + MN),
where the cluster can go in either direction. (A3)

V. CONCLUSION

where in the last step we have used E).
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bidisperse background. If it collides with another particle of 5 — 5 =" s
massm; andv; the energy loss will be, on the average., (vi = Vi) = 2v2(|ug]®) = 877\’2f u;; P(u;j)du;
averaged over the collisional cross section 0
1 mm 16 (kBT(ml + mj))3/2
i b BE —v)2 == . (A7)
Eloss 4m| +mJ( 52)(V| VJ) ’ (A4) \“"277' mimj
which happens to be precisehalf of the energy loss in a ) ) o .
frontal collision. Inserting this expression in EGA5) we find
A collision will happen(within a time intervaldt) if either
of the two particles finds itself in the cross-sectional volume 2 12
of the other, which is a cylinder of lengfti-vildtand front — g7) = \277(1 - & (g)¥2S niny(r; + rj)2<wl)
area m(r; +r) Hence the collision rate per volume is the ij=1 m
product of the particle densitiesi(z)nj(z) and this cross- 5
sectional volume divided byt, where we assume that the =8y 77(1 A (k T)alz( n1r1 ”ﬁ M)
densities do not vary significantly over this volume. \’m1 Vm, 2V2Vmy, )
The dissipation rate per volunig(z)] is found by multi- (A8)
plying the collision rate per volume with the energy loss
(A4), and averaging over all possible realizations of the in-
dependently distributed velocitieg andv;: with my,=mym,/(m;+m,) the so-called reduced mass. The
1 2 energy dissipation rat€ now follows by integratingq(z)
42=-(1-A n@n @+ rj)zm_<|vi —vP), over the whole volume of the compartment:
ij=1 j +m;
(A5)
Q=0 | q(zdz
where we have multiplied by an additional fact@rto bal-
{a\lzcci the fact that in this procedure we count every collision _ \2 (1 ) (kgT)3
i
To evaluate the ensemble averafje—v|°), we note o[ M+ 2
L B |
that—under the assumption of Maxwellian velocity Xi%l(ri 1)) mm, fo ni(2)nj(z)dz. (A9)

distributions—all of the components gf andv; are distrib-
uted Gaussian with variancése., squared standard devia- _ _ o _
tions) O'izszT/mi and similarly forof_ Again, it is possible The integral in the above expression is readily evaluated us-
to generalize this to two different temperaturBsfor the  iNg Egs.(5) and(6):

speciesi=1, 2, but here we will continue to work witffi;

=T,=T. .
It follows that the components of the combined variable f ni(2)nj(2dz= in T—‘—N N;, (A10)
uj=(vi— vJ)/\2 are also Gaussian, with zero mean, and its 0 B

variances are found by adding those of {iredependently

distributed constituentsv; and v; and dividing by 2:0%  with which we finally obtain

=kgT/2m+kgT/2m;. The distribution functionP(u;;) thus
equals

_4Amg(1 - e
1 2 \779( ) ’kBT \m1r2N1
P(Uj)) = ———5575€ {12 Q
1] (2 0_2)3/2
m
( 3/2 +Vmr2NZ + \/712(r1+ rz)leNz)- (A11)
(m; + m])kaT (m + mJ)kBT
(A6) Equating the two expressions for the rate of energy input
[Eg. (A3)] and energy los$Eq. (A1l)] yields the granular
whereu;; =|u;;|, and with this we can calculate temperaturel given in Eq.(8) in the main text.
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